Mild solutions to the time fractional Navier–Stokes equations in RN

نویسندگان
چکیده

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Almost Automorphic Mild Solutions to Fractional Partial Difference-differential Equations

We study existence and uniqueness of almost automorphic solutions for nonlinear partial difference-differential equations modeled in abstract form as (∗) ∆u(n) = Au(n+ 1) + f(n, u(n)), n ∈ Z, for 0 < α ≤ 1 where A is the generator of a C0-semigroup defined on a Banach space X, ∆ denote fractional difference in Weyl-like sense and f satisfies Lipchitz conditions of global and local type. We intr...

متن کامل

On mild solutions to fractional differential equations with nonlocal conditions

We prove new existence results of mild solutions to fractional differential equations with nonlocal conditions in Banach spaces. The nonlocal item is only assumed to be continuous. This generalizes some recent results in this area.

متن کامل

$L^p$-existence of mild solutions of fractional differential equations in Banach space

We study the existence of mild solutions for semilinear fractional differential equations with nonlocal initial conditions in $L^p([0,1],E)$, where $E$ is a separable Banach space. The main ingredients used in the proof of our results are measure of noncompactness, Darbo and Schauder fixed point theorems. Finally, an application is proved to illustrate the results of this work. 

متن کامل

Existence of Mild Solutions for Fractional Evolution Equations

In this article, we establish sufficient conditions for the existence of mild solutions for fractional evolution differential equations by using a new fixed point theorem. The results obtained here improve and generalize many known results. An example is also given to illustrate our results.

متن کامل

Existence of Mild Solutions for Nonlocal Semilinear Fractional Evolution Equations

In this paper, we investigate a class of semilinear fractional evolution equations with nonlocal initial conditions given by (1) ⎧⎨ ⎩ dqu(t) dtq = Au(t)+(Fu)(t), t ∈ I, u(0)+g(u) = u0, where 0 < q< 1 , I is a compact interval. Sufficient conditions for the existence of mild solutions for the equation (1) are derived. The main tools include Laplace transform, Arzela-Ascoli’s Theorem, Schauder’s ...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Differential Equations

سال: 2015

ISSN: 0022-0396

DOI: 10.1016/j.jde.2015.04.008